MRI/TRUS data fusion for brachytherapy
نویسندگان
چکیده
منابع مشابه
MRI/TRUS data fusion for brachytherapy
BACKGROUND Prostate brachytherapy consists in placing radioactive seeds for tumour destruction under transrectal ultrasound imaging (TRUS) control. It requires prostate delineation from the images for dose planning. Because ultrasound imaging is patient- and operator-dependent, we have proposed to fuse MRI data to TRUS data to make image processing more reliable. The technical accuracy of this ...
متن کاملMRI/TRUS data fusion for prostate brachytherapy. Preliminary results
Prostate brachytherapy involves implanting radioactive seeds (I125 for instance) permanently in the gland for the treatment of localized prostate cancers, e.g., cT1c-T2a N0 M0 with good prognostic factors. Treatment planning and seed implanting are most often based on the intensive use of transrectal ultrasound (TRUS) imaging. This is not easy because prostate visualization is difficult in this...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کاملa new approach to credibility premium for zero-inflated poisson models for panel data
هدف اصلی از این تحقیق به دست آوردن و مقایسه حق بیمه باورمندی در مدل های شمارشی گزارش نشده برای داده های طولی می باشد. در این تحقیق حق بیمه های پبش گویی بر اساس توابع ضرر مربع خطا و نمایی محاسبه شده و با هم مقایسه می شود. تمایل به گرفتن پاداش و جایزه یکی از دلایل مهم برای گزارش ندادن تصادفات می باشد و افراد برای استفاده از تخفیف اغلب از گزارش تصادفات با هزینه پائین خودداری می کنند، در این تحقیق ...
15 صفحه اولCombination of Feature Selection and Learning Methods for IoT Data Fusion
In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The International Journal of Medical Robotics and Computer Assisted Surgery
سال: 2006
ISSN: 1478-5951,1478-596X
DOI: 10.1002/rcs.95